Logo AF STŘECHY - Adam Fryželka - Kompletní dodávky a montáže střech, krovů a krytin

Střešní doplňky

Střešní okna

Střešní okna


jsou další nedílnou součástí vaší stavby a je třeba se zaměřit na jejich výběr. Nepřeberné množství typů střešních oken nám dává možnost si vybrat, jak z funkčního, tak i z estetického hlediska to nejlepší pro naši střechu.
Pro bližší informace o střešních oknech nás kontaktujte nebo se podívejte na nabídku oken Velux.


klempířské práce
klempířské práce
Hromosvody+revize

Hromosvod se zřizuje zejména na objektech, kde by mohl výboj blesku:


  • ohrozit zdraví nebo životy osob (bytové domy, nemocnice, školy)
  • způsobit poruchu (elektrárny, plynárny, vodárny, nádraží)
  • způsobit hospodářské či kulturní škody (výrobní haly, muzea, archivy)
  • na objektech, které sousedí s objekty významnými a v případě zásahu bleskem by je mohly ohrozit požárem.

  • Funkce hromosvodu:


    Mezi zemí a bouřkovým mrakem může během bouřky vzniknout rozdíl elektrických potenciálů. Překročí-li rozdíl těchto potenciálů elektrickou pevnost vzduchové vrstvy mezi takovýmto mrakem a zemí, dojde k elektrickému bleskovému výboji. K tomuto výboji dojde v místě, kde vzduchová vrstva mezi zemí a mrakem je nejtenčí. Proto bleskem bývají zasažena nejčastěji různá vyvýšená místa v krajině, např. stromy nebo budovy.
    Hromosvod využívá této zákonitosti. Lze jej obecně popsat jako elektricky vodivý předmět umístěný ve výšce nad chráněným objektem a vodivě spojený se zemí. Tím, že je hromosvod umístěn nad chráněný předmět, zvyšuje se pravděpodobnost, že blesk zasáhne hromosvod (který bezpečně svede potenciál blesku do země) a nikoli objekt nacházející se pod hromosvodem.


    Revize hromosvodů dle ČSN 341390, ČSN EN 62305


    Hromosvod je atypické zařízení v tom smyslu, že za normálních okolností nevykazuje žádnou činnost - ta se projeví až při výboji atmosférické elektřiny - úderu blesku.

    Fotovoltaiky

    Fotovoltaika


    Je metoda přímé přeměny slunečního záření na elektřinu (stejnosměrný proud) s využitím fotoelektrického jevu na velkoplošných polovodičových fotodiodách. Jednotlivé diody se nazývají fotovoltaické články a jsou obvykle spojovány do větších celků - fotovoltaických panelů. Samotné články jsou dvojího typu - krystalické nebo tenkovrstvé. Krystalické články jsou vytvořeny na tenkých deskách polovodičového materiálu, tenkovrstvé články jsou přímo nanášeny na sklo nebo jinou podložku. V krystalických technologiích převažuje křemík, a to monokrystalický nebo multikrystalický, jiné materiály jsou používány pouze ve speciálních aplikacích. Tenkovrstvých technologií je celá řada, například amorfní křemík a mikrokrystalický křemík, jejichž kombinace se nazývá tandem, dále telurid kadmia a CIGS sloučeniny. Díky rostoucímu zájmu o obnovitelné zdroje energie a dotacím se výroba fotovoltaických panelů a systémů v poslední době značně zdokonalila.


    Moderní technologie


    V současné době se vyvíjí takzvaná třetí generace fotovoltaiky. Nosnou myšlenkou této generace fotovoltaiky je zvýšení účinnosti za použití tenkovrstvých technologií, pokud možno při použití netoxických, hojně se vyskytujících materiálů. Zvýšení účinnosti lze dosáhnout obejitím Shockleyova-Queisserova limitu pro fotovoltaický článek s jedním polovodičovým přechodem použitím struktur s větším počtem P-N přechodů. Teoreticky byly navrženy i jiné principy, dosud se však nepodařilo je experimentálně ověřit. Shockleyův-Queisserův limit definuje maximální účinnost fotovoltaického článku s jedním P-N přechodem. Další možností, jak zvýšit účinnost fotovoltaického článku je modifikace spektra záření dopadajícího na P-N přechod konverzí vysokoenergetických fotonů nebo nízko-energetických fotonů na fotony o energii, která nejlépe odpovídá fyzikálním vlastnostem P-N přechodu.

    ploché střechy